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Abstract

This paper studies operational risk. We discuss its economic and math-
ematical characterization and its estimation. The insights for this char-
acterization originate in the corporate finance and credit risk literature.
Operational risk is of two types, either (i) the risk of a loss due to the firm’s
operating technology, or (ii) the risk of a loss due to agency costs. These
two types of operational risks generate loss processes with completely
different characteristics. The mathematical characterization of these op-
erational risks is modeled after the risk of default in the reduced form
credit risk literature. We show that although it is conceptually possible
to estimate the operational risk processes’ parameters using only market
prices, the non-observability of the firm’s value makes this an unlikely
possibility, except in rare cases. Instead, we argue that data internal to
the firm, in conjunction with standard hazard rate estimation procedures,
provides a more fruitful alternative. Finally, we show that the inclusion
of operational risk into the computation of fair economic capital (as with
revised Basel II) without the consideration of a firm’s NPV, will provide
biased (too large) capital requirements.
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Operational Risk

1 Introduction
Risk management concerns the investigation of four significant risks of a loss
to a firm or portfolio: market risk, credit risk, liquidity risk, and operational
risk (see Jarrow and Turnbull [13], p. 587). Market risk includes the risk
of a loss due to unanticipated price movements in financial securities or asset
values, and it includes price fluctuations due to either equities, interest rates,
commodities, or foreign currencies. Credit risk is the risk of a loss due to
default, and liquidity risk is the risk of a loss due to the inability to liquidate
an asset or financial position at a reasonable price in a reasonable time period.
And, according to the revised Basel Committee revised report [1] ”operational
risk is defined as the risk of loss resulting from the inadequate or failed internal
processes, people and systems or from external events. This definition includes
legal risk.” Furthermore, ”legal risk includes, but is not limited to, exposure to
fines, penalties, or punitive damages resulting from supervisory actions, as well
as private settlements.”
A study of the academic risk management/financial engineering literature

readily confirms that the field has mastered - at least conceptually - market and
credit risk (for texts on these topics, see Jarrow and Turnbull [13], Bielecki and
Rutkowski [3], and Musiela and Rutkowski [18]). Most recently, liquidity risk
has become the focus of a significant research effort (see Jarrow and Protter
[14] for a review). In contrast, operational risk has received very little aca-
demic scrutiny (see Jorion [16], chapter 19, Leippold and Vanini [17] and the
few references cited therein1). The available literature on operational risk is
almost exclusively contained in the institutional press.2 The purpose of this
paper is to fill this void in the academic literature by providing an economic
and mathematical characterization of operational risk, useful for quantification
and estimation. This characterization is based on insights from the corporate
finance and credit risk literatures. Estimation of the model’s parameters is left
for subsequent research.
Operational risk is partitioned into one of two types, either (i) the risk of

a loss due to the firm’s operating technology/system, including failed internal
processes and transactions, or (ii) the risk of a loss due to agency costs, includ-
ing fraud and mismanagement. These two types of operational risks generate
loss processes with completely different characteristics. One is based on the
process/system, the other is based on incentives. The mathematical characteri-
zation for both of these operational risks is modeled similar to the modeling of
default risk in the reduced form credit risk literature. We show that although it
is conceptually possible to estimate the operational risk processes’ parameters

1Leippold and Vanini [17] study operational risk from a production (network) perspective.
Leippold and Vanini’s approach differs from that taken in our paper.

2 See for example, ”Op Risk and Black Swans,” Risk magazine, Sept. 2004.
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using only market prices, the non-observability of the firm’s value makes this an
unlikely possibility, except in rare cases. Instead, we argue that data internal
to the firm, in conjunction with standard hazard rate estimation procedures,
provides a more fruitful alternative. Its estimation requires time series obser-
vations of gains and losses generated by the firm’s own operating system. Only
the agency cost component can possibly be estimated using data external to the
firm’s operating system.
One additional minor, but important contribution of this paper, is our high-

lighting the importance of both the identification and inclusion of the firm’s
NPV process in the computation of risk measures (like Value at Risk) for the
determination of a firm’s fair economic capital. Unlike market, credit and liq-
uidity risk which involve markets that are external to the firm, both operational
risk and a firm’s NPV are internal to the firm. The inclusion of operational
risk in capital determination, without the NPV process, ignores a fundamental
economic motivation for the existence of firms, and this procedure will provide
biased (too large) estimates of a firm’s fair economic capital (as is the case in
the revised Basel II report [1]).
An outline of this paper is as follows. Section 2 provides the economic based

definition. Section 3 provides a simple, yet robust mathematical characteriza-
tion of the operational event risk processes. Section 4 discusses estimation, and
section 5 concludes.

2 The Definition
This section provides an economic and mathematical characterization of oper-
ational risk. Based on the standard definition, we divide operational risk into
two types. Type one corresponds to the risk of a loss due to the firm’s operating
system, i.e. a failure in a transaction or investment, either due to an error in the
back office (or production) process or due to legal considerations. And, type
two corresponds to the risk of a loss due to incentives, including both fraud and
mismanagement.3 The second type of operational risk represents an agency
cost, due to the separation of a firm’s ownership and management. Agency
costs are recognized as a significant force in economics, and they have received
significant study in the corporate finance literature as key determinants of the
firm’s capital structure and dividend policy (see Brealey and Myers [4]). Both
types of operational risk losses occur with repeated regularity, and they can
be small or catastrophic. Spectacular catastrophic examples include Orange
County, the Barings Bank failure, or the Bankers Trust and Procter and Gamble
fiasco (see Risk Books [21]).
We consider a finite horizon, continuous trading setting with t ∈ [0, T ] on

a filtered probability space (Ω, F, {Ft}, P ) satisfying the usual conditions (see
Protter [19]) with P the statistical probability measure. Let rt denote the

3There is some ambiguity with respect to the classification of human error. If the human
error is due to misaligned incentives, then it should be included in the agency operational risk
category. Otherwise, it is system related risk.
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default free spot rate of interest, and let Sit represent the market value of asset
i ∈ {1, ..., n} at time t. For simplicity, we assume that these assets have no cash
flows over their lives.4 We assume that the market for these assets is arbitrage
free, so that there exists an equivalent martingale probability measure Q such
that

Sit = EQ
t {SiT e−

T
t
rvdv} for all i

where EQ
t {·} is under the martingale probability. Under this structure, market

prices can be computed as the expected discounted value of their future cash
flows under the martingale probability. The markets need not be complete, so
the martingale probability need not be unique.
We consider a firm operating in this setting, trading financial securities or

investing in real assets with prices Sit for i = 1, ..., n, generating a firm value of
Vt. As indicated, the firm is conceptualized as a portfolio of financial securities
and/or real assets. The firm’s value represents the aggregate value of the left
side of the firm’s balance sheet. The right side of the firm’s balance sheet
consists of the firm’s liabilities and equity, which we also assume trade in an
arbitrage free, but possibly incomplete market. Under this assumption, the
firm’s value Vt trades. For simplicity, we assume that the firm’s value has
no cash flows. Consequently, its time t value can also be represented as an
expected discounted future value using the martingale measure, i.e.

Vt = EQ
t {VT e−

T
t
rvdv}.

The economic setting can be understood by examining Figure 1. The firm
is represented by an operating technology (the green box) that takes as inputs
traded financial securities and real assets, with prices Sit , and returns as an
output the value of the firm Vt. The operating technology transformation
represented within the firm is discussed subsequently. Also, for subsequent
usage, we let Xt denote a vector of state variables, Ft − measurable, that
characterize the state of the economy at time t. Included in this set of state
variables are the spot rate of interest rt and the market prices Sit . We let F

X
t

denote the (completed to include all zero probability events) filtration generated
by the state variables Xt up to and including time t.

2.1 The NPV of the Firm’s Operating Technology

In our setting, the existence of an operating technology distinguishes a firm
from an individual trading in the market. An operating technology transforms
the assets the firm purchases into more valuable objects. As argued in Jar-
row and Purnanandam [15], this is possible if the firm has some special talent,
information, or managerial expertise in selecting assets for investment (see the
discussion section below). This increase in asset value due to the firm’s operat-
ing technology is represented by the Ft−measurable stochastic process π(t) ≥ 1

4Cash flows only complicate the notation, but not the logic of the subsequent analysis, and
are therefore omitted for clarity.
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for all t.5 Letting St represent the aggregate market value of the firm’s asset
portfolio, the change in value due to the firm’s operating technology at time T
is

ST · π(T ) ≥ ST ,

see Figure 1. π(t) is called the firm’s net present value (NPV) process. The
firm’s NPV process will be shown to be an important determinant for the un-
derstanding and quantification of a firm’s operational risk.

2.2 An Owner-Managed Firm

To introduce the characterization of operational risk, we start with the simplest
economic setting - that of an owner-managed firm (or portfolio). The owner
or manager invests his capital in some assets, either real or financial and she is
concerned about the risk of a loss from her investments.
As in the previous section, the time t marked-to-market value of the firm’s

asset portfolio is denoted St. This value represents the market value that
would be recorded, for example, if the assets were financial securities trading
on an organized exchange. In a traditional risk management model, one would
be concerned only with the probability distribution of this price process St,
and various risk measures could be used to characterize the risk of a loss on
this position. The loss could be due to either market, credit or liquidity risk.
Operational risk, however, is something more. By construction, an owner-
managed firm only faces the first type of operational risk. To an owner-managed
firm, it would represent the risk due to a failed transaction, perhaps an error in
the executive of a trade (or investment), a legal dispute, or possibly an error in
judgement.
We represent this additional loss by the multiplication of the previous port-

folio’s value St ·π(t) by the Ft−measurable stochastic process θ1(t) ≤ 1 for all
t. The quantity θ1(t) represents the accumulated time t ”recovery” value after
all operational risk events of the first type are incurred. The internal value of
the firm’s assets at time T , after the inclusion of operational risk, is thus

ST · π(T ) · θ1(T ),

see Figure 1. It is important to emphasize that this reduction in asset value
due to type 1 operational risk is realized internally within the firm. Given that
Vt is a traded asset, the market value of the owner-managed firm’s assets is

Vt = EQ
t {ST · π(T ) · θ1(T ) · e−

T
t
rvdv}. (1)

5For simplicity of presentation we have assumed that π(t) ≥ 1 for all t with P probability
1. However, this can be substantially weakened. As will be seen below, all we need is for
Q(π(T ) ≥ 1) > 0 and that this probability is large enough so that V0 ≥ S0 at the start of the
model (see expression (2)).
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2.3 An Agent-Managed Firm

Next, we consider a firm managed by an agent. Of course, for practical applica-
tions, this is the most relevant case. Given an agent-managed firm, the second
type of operational risk is also present. We represent this additional loss by the
multiplication of the previous firm value St · π(t) · θ1(t) by the Ft−measurable
stochastic process θ2(t) ≤ 1 for all t which represents the accumulated time t
”recovery” value after all operational risk events of the second type. Since an
agent-managed firm also faces the first type of operational risk, the value of the
firm’s investment portfolio must reflect both risks.
By the same line of reasoning as that given before, the internal valuation of

the firm’s portfolio is
St · π(t) · θ1(t) · θ2(t),

see Figure 1, and the time t market value of the firm’s assets is

Vt = EQ
t {ST · π(T ) · θ1(T ) · θ2(T ) · e−

T
t
rvdv}. (2)

This is the most general formulation of operational risk that we will consider
below.

2.4 The Firm’s NPV Process - Revisited

It is important to stress the economic importance of including the firm’s NPV
process when considering operational risk for the purposes of risk measure com-
putations, as with the revised Basel II capital requirements [1]. As verified
by expression (2), operational risk reduces the firm’s value, relative to market
prices (marking-to-market), because operational risk always has a non-positive
impact on firm value (θ1(T ) · θ2(T ) ≤ 1). This implies that, without the inclu-
sion of the nonnegative NPV process (π(t) ≥ 1), there would be no reason for
this firm to exist. Indeed, shareholders could generate higher wealth themselves
by directly purchasing the firm’s assets. This statement follows from that fact
that without the NPV process included, Vt ≤ St for all t with probability one.6

In fact, in well-functioning financial markets, we would expect that for healthy
firms, the reverse inequality Vt ≥ St holds for all t with probability one. That
is, on average (as measured by expression (2) in market prices), the NPV process
dominates (is larger than) the average loss due to operational risk. This is an
important observation for the determination of a firm’s fair economic capital.
Unlike market, credit or liquidity risk which involve market dynamics and are

external to the firm, operational risk is internal to the firm. When considering
risks that are internal to the firm, it is essential to include both the negative
(operational) as well as the positive (NPV) ones. The inclusion of the negative
alone - operational risk - without the consideration of the positive one - the
firm’s NPV process - ignores a fundamental economic element that is essential

6The algebra is that without π(t), Vt = EQ
t {ST · θ1(T ) · θ2(T ) · e−

T
t rvdv} ≤

EQ
t {ST e−

T
t rvdv} = St.
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for the firm’s existence - the reason why a firm’s equity trades at positive values.
Of course, the NPV dominates operational risk only on average, and in the tail
of the distribution, operational risk may far exceed the firm’s NPV (in fact, it
could exceed both the firm’s NPV and the market price component). As such,
operational risk is important, and should be included in the determination of
economic capital. But, if one wants to determine a firm’s fair economic capital,
then reducing the firm’s value due to operational risk (as in revised Basel II),
without the inclusion of a firm’s NPV, is inappropriate.

2.5 Discussion

Although we believe that this characterization of the firm’s NPV and opera-
tional risk processes as in Figure 1 is uniformly applicable to both financial and
non-financial firms, to help the reader reach a similar conclusion, this section
discusses some illustrations. In these illustrations, the NPV process is due to
the firm’s (or business line’s) franchise value.
For commercial and investment banks, this characterization captures its var-

ious lines of businesses, including for example sales and trading, credit cards,
and consumer deposits. For sales and trading, the NPV process is generated by
proprietary trading in undervalued securities or offering services to its clients.
Systems operational risk occurs due to failed transactions, and agency opera-
tional risk is due to fraud and/or mismanagement, examples include Bankers
Trust and Barings Bank (Risk Books [21], chp 36 and 37). It is interesting to
point out that the NPV process has long been recognized, and even estimated,
for credit cards and consumer deposits (see Chatterjea, Jarrow and Neal [6] and
Janosi, Jarrow and Zullo [10]). In this context, the NPV process is due to the
fact that banks can pay below market rates on demand deposits or charge above
market rates on credit card loans.
The same characterization applies to mutual funds and hedge funds. For

mutual funds, their franchise value is enormous (the NPV process), their system
operational risk is controlled by recording/confirming all transactions, and their
agency operational risk is controlled by monitoring management trading on their
own accounts. Even so, failures sometimes occur on both dimensions, e.g. the
front running of trades for some clients at the expense of other clients, and
failed market manipulations. For hedge funds, a similar logic applies for both
the NPV and operational risk processes. Long Term Capital Management is the
most prominent example of a hedge fund with a large NPV process based on
arbitrage trading strategies, but eventually failing due to agency cost operational
risks. According to some accounts, LTCM extended its trading to asset classes
where it did not have expertise, and it miscalculated its liquidity risk (see Risk
Books [21], chp 32).
For non-financial firms, the science of selecting investment projects - capital

budgeting - is the science of computing the NPV process (see Ross, Westerfield,
Jaffee [20]). System operational risks are failures in the production process,
a well-studied area in operations management. Agency operational risk is
manifested in various guises. For drug companies, it could be the occurrence
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of a seriously detrimental (or fatal) side effect for drugs resulting from a hasty
entrance into a new market. For fast food companies it could be food poisoning
due to sloppy food preparation. And, for construction companies, it could be
faulty construction or the use of inadequate building materials.
Although not exhaustive, this varied list of illustrations documents the gen-

erality of our characterization of the firm’s value process. For practical appli-
cations, we need to impose more structure on these abstract processes. This is
the content of the next section.

3 The NPV and Operational Risk Processes
This section presents a simple, yet robust formulation of the NPV and opera-
tional risk event processes. We model these stochastic processes following the
jump process formulation often used in the reduced form credit risk literature
(see Bielecki and Rutkowski [3]). Other formulations are possible, and these
extensions are left for subsequent research.

3.1 The NPV Process

This section presents the stochastic process for the NPV process π(t). Let N0(t)
be a doubly stochastic (Cox) counting process, initialized at zero (N0(0) = 0),
that counts the number of positive NPV events that occur between time 0 up to
and including time t. We assume that this counting process is measurable with
respect to the given filtration Ft, and that it has an intensity per unit time given
by λ0(s) = λ0(Xs) ≥ 0 that is FX

s −measurable. Given FX
T , we assume that

N0(t) is independent of St. This is often called the "conditional independence"
assumption. Continuing, we let a NPV event at time t cause a percentage
increase in firm value equal to α(t) = α(Xt) > 0 that is also FX

t −measurable.
Thus,

π(t) =
QN0(t)

i=0 (1 + αTi). (3)

where π(0) = 1, Ti for i = 0, 1, 2, ... are the jump times of N0(t) with T0 =
αT0 = 0. We assume that the intensity and drifts processes satisfy the technical
conditions needed for the existence of the various processes and the subsequent
computations (see Bremaud [5]).
Note that in general, the NPV process π(t) is correlated to the portfolio’s

market value St due to their mutual dependence on the state variables Xt.
However, after conditioning upon these variables, the randomness generating
the counting process N0(t) in the asset’s NPV is idiosyncratic and firm specific,
not otherwise related to market prices or the state variables. Even so, this
jump NPV process risk could still require a market risk premium if these risks
are not diversifiable in a large portfolio (see Jarrow, Lando, Yu [12]). To
accommodate this possibility, under the equivalent martingale measure Q, we
let the counting process have the intensity λ0(s)μ0(s) where μ0(s) > 0 is the
risk premium associated with the NPV process (see Bremaud [5] p. 241).
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3.2 System Type Operational Risk

First, let us consider the first type of operational risk. We want a formulation
of the θ1(t) process that can be utilized in practice. Conceptually, it is reason-
able to believe that the occurrence of an operational risk event is related to the
volume of transactions underlying the firm’s portfolio. Such a detailed imple-
mentation would require decomposing the firm’s portfolio into its component
parts, and then modeling the trading process of each individual asset, keeping
track of the number of transactions and the operational risk events. The oc-
currence of an operational risk event could then be modeled at the transaction
level. This would be a very complex procedure (see Leippold and Vanini [17]
for one such approach). Although perfectly reasonable to pursue, we follow
a ”reduced form approach” instead and concentrate on the entire portfolio’s
value.7 Refinements in this methodology are delegated to subsequent research.
Formally, let N1(t) be another doubly stochastic (Cox) counting process,

initialized at zero (N1(0) = 0), that counts the number of operational risk events
of type 1 that occur between time 0 up to and including time t. We assume
that this counting process is measurable with respect to the given filtration Ft,
and that it has an intensity per unit time given by λ1(s) = λ1(Xs) ≥ 0 that is
FX
s −measurable. Given FX

T , we assume that N1(s) is independent of St and
N0(t). We let an operational risk event at time t cause a percentage reduction
in firm value equal to −1 < δ1(t) = δ1(Xt) < 0 that is FX

t − measurable.
Hence,

θ1(t) =
QN1(t)

i=0 (1 + δ1(Ti)) (4)

where θ1(0) = 1, Ti for i = 0, 1, 2, ... are the jump times of N1(t) with T0 =
δ1(T0) = 0.
Similar to the firm’s NPV process, we assume that conditional upon the

path of the state variables Xt up to time T , N1(t) is independent of both St
and N0(t). Again, this assumption is equivalent to saying that any additional
randomness present in this operational risk is idiosyncratic and firm specific.
As before, this risk could still require a market risk premium if these risks are
not diversifiable in a large portfolio. To accommodate this possibility, under the
equivalent martingale measure Q, we let the counting process have the intensity
λ1(s)μ1(s) where μ1(s) > 0 is the risk premium associated with this operational
risk process.
Also, unconditionally, all of the N1(t), N0(t) and St are correlated processes.

They are correlated through the common state variables. This correlation is
important, for example, because one might believe that as the value of the firm’s
asset portfolio increases, the size of the system type operational risk losses may
decline due to an improved back office systems.

7 In fact, this should really be thought of as the portfolios related to the various business
lines as specified in the revised Basel II report [1] p. 139. The subsequent analysis follows
with the appropriate and straightforward aggregation of the business lines into the firm’s
entire portfolio.
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3.3 Agency Cost Type Operational Risk

The agency cost operational risk event can be modeled in the same way. Using
superscripts ”2” to indicate a type 2 operational risk event, we have

θ2(t) =
QN2(t)

i=0 (1 + δ2(Ti)) (5)

where θ2(0) = 1, Ti for i = 0, 1, 2, ... are the jump times of N2(t), and T0 =
δ2(T0) = 0. N2(t) is assumed to be conditionally independent ofN0(t), N1(t), St.
Again, this assumption is equivalent to saying that any additional random-

ness present in this operational risk is idiosyncratic and firm specific. As be-
fore, this risk could still require a market risk premium if these risks are not
diversifiable in a large portfolio. To accommodate this possibility, under the
equivalent martingale measure Q, we let the counting process have the intensity
λ2(s)μ2(s) where μ2(s) > 0 is the risk premium associated with this operational
risk process.
Finally, we note again that the agency cost operational risk process is cor-

related with the firm’s asset portfolio, the NPV process, and the system type
operational risk process through the state variables Xt. This correlation is
important because one might believe that as the value of the firm’s asset port-
folio declines, agency cost operational risk losses may increase due to the firm’s
managers trying to increase their performance and save their jobs.
The key distinction between the two types of operational risk is that, most

likely, |δ2| >> |δ1| and λ2 << λ1, that is operational risk of type 2 results in a
larger loss, but is less likely to occur.

3.4 The Firm’s Internal Value Generating Process

In conjunction, the firm’s time t internal value generating process is given by

St · π(t) · θ1(t) · θ2(t) = St
QN0(t)

i=0 (1 + αTi)
Q2

j=1[
QNj(t)

i=0 (1 + δj(Ti))] (6)

where the counting processes {N0(t), N1(t), N2(t)} have the intensities {λ0(t),
λ1(t), λ2(t)} under the statistical probability measure P and {λ0(t)μ0(t), λ1(t)μ1(t),
λ2(t)μ2(t)} under the martingale probability measure Q. Of course, for the
computation of risk measures, like Value at Risk, the statistical measure is the
relevant probability, while for valuation and hedging the martingale measure is
the appropriate choice.
For practical applications, although not necessary, we assume that within a

business line, the NPV and operational risk processes (π(t), θ1(t), θ2(t)) do not
depend on the traded assets Sit (or St) as given in Figure 1. This implies that
the firm’s internal value process is linear in St so that the internal value process
applies to the individual traded assets Sit as well as to portfolios of traded assets
St. This observation is used in example 1 below without further comment.
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3.5 Asset Pricing and Risk Measures

For pricing and risk measure computation, we have that the market value of the
firm’s value generating process can be represented as

Vt = EQ
t {ST e−

T
t
rvdv

QN0(T )
i=0 (1 + αTi)

Q2
j=1[

QNj(T )
i=0 (1 + δj(Ti))]}. (7)

We show in the appendix that this can be simplified to

Vt = EQ
t {ST e−

T
t
[rs−αsλ0(s)μ0(s)−δ1(s)λ1(s)μ1(s)−δ2(s)λ2(s)μ2(s)]ds}. (8)

We see that the firm value equals the portfolio’s market price process ST dis-
counted by the spot rate after an adjustment for the NPV process and opera-
tional risk. The spot rate process is decreased by the expected increase in value
due to the NPV process (recall that αs is positive), but increased to reflect both
types of operational risk (recall that both δ1(s) and δ2(s) are negative). This
simplification is important because it demonstrates that pricing in the presence
of operational risk can be handled via a simple adjustment to the discount rate
(this same adjustment is used in the credit risk literature). Then, the direct
application of the mathematics developed for the pricing of interest rate deriv-
atives under default free term structure evolutions can be directly applied to
the computation of the relevant quantities given operational risk. For exam-
ple, if one assumes affine processes for the combined jumps and recovery rate
processes, then closed form solutions for these expressions and various options on
the firm’s cash flows can be obtained (see Shreve [22] chapter 10). To illustrate
these computations, we provide the following two-factor Gaussian example.

Example 1 Two-Factor Affine Model
Consider a two factor Gaussian model as in Shreve [22], p. 406). The

CIR two factor model follows similarly (see p. 420 instead). Here, the state
variables follow diffusion processes given by

dX1(t) = −φ1X1(t)dt+ dW1(t)

dX2(t) = −φ21X1(t)dt− φ2X2(t) + dW2(t)

whereW1(t) andW2(t) are independent Brownian motions under Q, and φ1 > 0,
φ2 > 0, φ21 are constants.
Let the spot rate follow an affine process in the state variables given by

rt = a0 + a1X1(t) + a2X2(t).

The value of a default free zero-coupon bond in the market (where ST = 1 with
probability one) is

St = EQ
t {1 · e−

T
t
r(u)du} = e−X1(t)C1(T−t)−X2(t)C2(T−t)−A(T−t)

where C1(0) = C2(0) = A(0) = 0. If a1 6= a2,

C1(τ) =
1

φ1

µ
a1 −

φ21a2
a1

¶
(1− e−φ1τ ) +

φ21a2
a2(a1 − a2)

(e−φ2τ − e−φ1τ ),
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C2(τ) =
a2
φ2
(1− e−φ2τ ),

A(τ) =

Z τ

0

µ
−1
2
C21(u)−

1

2
C22(u) + a0

¶
du.

Now, let the NPV process and operational risk event intensities, under Q,
also satisfy an affine process in the state variables given by

αtλ0(t)μ0(t) = b0 + b1X1(t) + b2X2(t),

δ1λ1(t)μ1(t) = c0 + c1X1(t) + c2X2(t),

δ2λ2(t)μ2(t) = d0 + d1X1(t) + d2X2(t).

Then, define new parameters by

ψ0 = a0 − b0 − c0 − d0,

ψ1 = a1 − b1 − c1 − d1,

ψ2 = a2 − b2 − c2 − d2,

and an adjusted spot rate process by

R(t) = rt − αtλ0(t)μ0(t)− δ1λ1(t)μ1(t)− δ2λ2(t)μ2(t)

= ψ0 + ψ1X1(t) + ψ2X2(t).

The value within the firm for a traded Treasury zero-coupon bond, according to
expression (8), is

Vt = EQ
t {1 · e−

T
t
R(u)du} = e−X1(t)C1(T−t)−X2(t)C2(T−t)−A(T−t)

where eC1(0) = eC2(0) = eA(0) = 0. If ψ1 6= ψ2, then

eC1(τ) = 1

φ1

µ
ψ1 −

φ21ψ2
ψ1

¶
(1− e−φ1τ ) +

φ21ψ2
ψ2(ψ1 − ψ2)

(e−φ2τ − e−φ1τ ),

eC2(τ) = ψ2
φ2
(1− e−φ2τ ),

eA(τ) = Z τ

0

µ
−1
2
eC21 (u)− 12 eC22 (u) + ψ0

¶
du.

These two values for the default free zero-coupon bond differ by the NPV and
operational risk processes impact within the firm. In general, we would expect
that Vt ≥ St.

Expression (6) is also directly relevant for computing various risk manage-
ment measures. For example, computing the 5% Value at Risk measure over
the horizon [0, T ] for the firm’s asset value requires finding the smallest η > 0
such that

P (VT ≤ −η) = .05.
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Using expression (6) yields

P (ST
QN0(T )

i=0 (1 + αTi)
Q2

j=1[
QNj(T )

i=0 (1 + δj(Ti))] ≤ −η) = .05.

Given diffusion processes for the state variables Xt, a process for ST , e.g. geo-
metric Brownian motion, and using the fact that Nj(t) are all mutually indepen-
dent given FX

T , this is easily computed using standard Monte-Carlo techniques
(see Glasserman [9]). Of course, the computation of Value at Risk is under the
statistical probability measure P using the intensities {λ0(t), λ1(t), λ2(t)} for
the relevant counting processes.
To further develop our understanding of expression (8) and its uses, it is

instructive to consider the constant parameter case.

Example 2 Constant Parameters
Assuming that

αtλ0(t)μ0(t), δ1(t)λ1(t)μ1(t), δ2(t)λ2(t)μ2(t)

are constants, expression (8) simplifies to

Vt = St(1 + α)N0(t)(1 + δ1)
N1(t)(1 + δ2)

N2(t)e[αλ0μ0+δ1λ1μ1+δ2λ2μ2](T−t). (9)

Here, the firm’s value is seen to be equal to the portfolio’s market value at time
t adjusted to reflect all past NPV and operational risk shocks, plus anticipated
changes in these events.
In this constant parameter case, the adjustments to the marked-to market

value of the firm’s portfolio St to reflect operational risk are easy to compute.
They amount to a deterministic and proportional change in value as represented
by the terms following St in expression (9).

As a first pass in implementing operational risk into a firm’s risk management
procedure, the constant parameter case, expression (9), could prove a very useful
tool. Its implementation would require minimal changes to any existing risk
management procedure. For example, computing prices and hedges at time 0
amounts to using the following expression

V0 = S0e
[αλ0μ0+δ1λ1μ1+δ2λ2μ2]T . (10)

In this expression, the modification is to multiply the market value S0 by a
deterministic proportionality constant which is greater than or equal to 1 under
the reasonable assumption that V0 ≥ S0. For computing risk measures, like
Value at Risk, one only needs to modify the existing procedure for computing the
market value of the portfolio St by a proportionality factor, obtained by running
three independent Poisson processes {N0(t), N1(t),N2(t)}. In contrast, expres-
sion (8) requires the specification of stochastic processes for the same quantities
and a more complex adjustment to the computation of the expectation operator
(the integral) as illustrated in example 1 above.
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4 Estimation
This section discusses the estimation of the NPV and operational risk processes’
parameters using market prices. It is argued below that it is conceptually
possible to estimate the NPV and operational risk factor parameters using only
market prices. However, from a practical perspective, except in rare cases,
this conceptual possibility can not be achieved. In contrast, the NPV and
operational risk processes can more easily be estimated using data internal to
the firm, using standard hazard rate estimation procedures. The estimation of
the various risk premium relevant to operational risk may be estimated using
techniques recently employed in the credit risk literature (see Driessen [7] and
Berndt, et. al. [2]). The estimation of these operational risk premium will not
be discussed further in this paper.
To see the validity of our assertions regarding the estimation of the NPV

and operational risk processes’ parameters, let us set up the preliminaries of
the argument. First, the market is assumed to observe the prices of the traded
assets St and Vt. These prices would be recorded in the financial press. We
note, for subsequent usage, that Vt represents the total value of the firm’s lia-
bilities and equity. Second, the technology’s NPV and operational risk factors
π(t), θ1(t), θ2(t), being firm specific and internal to the firm are not directly
observable to the market. Consequently, the issue is whether one can infer the
NPV and operational risk factors via market prices alone. We next argue that
this is conceptually possible.
To understand why, consider expression (9), where market prices give us the

left side of the following expression,

Vt
St
= (1 + α)N0(t)(1 + δ1)

N1(t)(1 + δ2)
N2(t)e[αλ0μ0+δ1λ1μ1+δ2λ2μ2](T−t).

After normalizing the firm value by the market value of the underlying asset
portfolio (VtSt ), changes in the left side represent changes in market prices due
to the NPV and operational risk processes alone. When Vt

St
jumps, it is due

to one of the counting processes {N0(t), N1(t), N2(t)}8 changing, and the per-
centage change in Vt

St
is due to the amplitude of the relevant jump process: {α,

δ1, δ2}. Given a reasonable collection of time series observations of the left
side, it should be possible using standard statistical procedures (e.g. maximum
likelihood estimation) to estimate the NPV and operational risk processes’ pa-
rameters.
However, there is practical problem. As noted in the empirical literature

estimating the structural approach to credit risk, the firm value process Vt is,
except in rare cases, not observable. This is due to the fact that not all of
the firm’s liabilities and equity trade in liquid markets (e.g. unfunded pension
obligations, private bank loans, lines of credit, etc.). Consequently, although
conceptually possible, in most cases, market prices alone are not sufficient to
estimate the NPV and operational risk processes.

8Note that two or more counting processes jumping at the same time occurs with proba-
bility zero under our structure.
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An alternative and perhaps more fruitful approach for estimating the NPV
and operational risk processes’ parameters is to use data on these processes
that are available internally to the firm. The necessary data are time series
observations of the dates of the occurrence of the NPV and operational risk
events, and the gains/losses that result at each occurrence. Standard statistics
can then be used to obtain the estimated gain/loss rates, and standard hazard
rate estimation procedures can be used to obtain the intensity processes (a
good source is Fleming and Harrington [8]). For example, consider a portfolio
of debt securities managed by the firm. Suppose that the trading gains are
regularly observed and the NPV is computed to be 5 percent with on average
20 occurrences per year. Further, the firm experiences on average 5 events
of operational risk of type 1, with average losses equal to .01 percent of the
portfolio’s value. But, for operational risk of type 2, it only experiences 1 such
event every 4 years on the portfolio, with an average loss equal to 2 percent
of the portfolio’s value. Then, bα = .05, bλ0 = 20, bδ1 = −.0001, bλ1 = 5, andbδ2 = −.02, bλ2 = 1

4 .
For agency cost type operational risk events, if large enough to be publicly

reported, the counting process N2(t) is observed externally to the firm. Then,
observing Vt

St
enables one to estimate the dollar losses (δ2(s)) directly without

data internal to the firm. Indeed, one can condition on the time series obser-
vations of agency cost operational risk events and apply standard hazard rate
estimation techniques (see Jarrow and Chava [11]) to estimate λ2(s). Given
the occurrence of a catastrophic event, one can then measure the dollar losses
δ2(s) using the changes in Vt

St
. We remark that this approach still has some

remaining difficulties: (i) this approach does not include estimates for the NPV
and system type operational risk parameters (α, λ0, δ1, λ1), (ii) nor does it in-
clude agency cost operational loses not significant enough to be reported in the
financial press, and (iii) finally, this procedure still requires an estimate of the
change in the firm’s value when the agency cost event occurs. These remaining
difficulties are easily overcome using data internal to the firm.

5 Conclusion
This paper provides an economic and mathematical characterization of opera-
tional risk. This characterization originates in the corporate finance and credit
risk literature. Operational risk is of two types, either (i) the risk of a loss due
to the firm’s operating technology, or (ii) the risk of a loss due to agency costs.
These two types of operational risks generate loss processes with completely dif-
ferent characteristic, both modeled as Cox counting processes. We show that
although it is conceptually possible to estimate the operational risk processes’
parameters using only market prices, the non-observability of the firm’s value
makes this an unlikely possibility, except in rare cases. Instead, we argue that
data internal to the firm, in conjunction with standard hazard rate estimation
procedures, provides a more fruitful alternative. Finally, we show that the in-
clusion of operational risk into the computation of fair economic capital (as with
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revised Basel II) without the consideration of a firm’s NPV, will provide biased
(too large) capital requirements.
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6 Appendix
This appendix provides the proof of expression (8). First,

Vt = EQ
t {ST e−

T
t
rvdv

QN0(T )
i=0 (1 + αTi)

Q2
j=1[

QNj(T )
i=0 (1 + δj(Ti))]}. (11)

can be rewritten as:

Vt = EQ
t {ST e−

T
t
rvdvπ(t)e

T
t
log(1+αs)dN0(s) · (12)

θ1(t)e
T
t
log(1+δ1(s))dN0(s)θ2(t)e

T
t
log(1+δ2(s))dN2(s)}.

Next, we note that EQ
t {e

T
t
log(1+αs)dN0(s) | FX

T } = e
T
t
αsλ0(s)μ0(s)ds with sim-

ilar expressions for the two types of operational risk. Then, taking iterated
conditional expectations of (12) and using conditional independence gives

Vt = EQ
t [ST e

− T
t
rvdvπ(t)EQ

t {e
T
t
log(1+αs)dN0(s) | FX

T } · (13)

θ1(t)E
Q
t {e

T
t
log(1+δ1(s))dN0(s) | FX

T }θ2(t)E
Q
t {e

T
t
log(1+δ2(s))dN2(s) | FX

T }].

Using the note proves expression (8).
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Figure 1:  The Economic Setting. 
 

i
tS  are prices of traded assets, tS  represents the aggregate value of the asset portfolio 

purchased by the firm, tV  is the firm’s value, )(tπ  is the proportionate change in the 
value of the firm’s asset portfolio due to the firm’s operating technology, )(1 tθ  is the 
proportionate change in the value of the firm’s asset portfolio due to the system 
operational risk, and )(2 tθ  is the proportionate change in the value of the firm’s asset 
portfolio due to the agency cost operational risk. 
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